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A method of constructing the shape of the surface of a drop, hanging from a horizontal plane under the action of surface-tension 
forces, or lying on it or pressed between parallel planes, is proposed. �9 2005 Elsevier Ltd. All rights reserved. 

The equations of the surface of a drop are usually determined by numerical methods [1, 2] or using 
power series, which converge in certain neighbourhoods of the points of expansion, which subsequent 
analytical extension.* However, the equation of the surface in the first two cases indicated has an irregular 
singularity, which is ignored when the solution is expanded in series. This singularity is taken into account 
in the method proposed here. 

In the case of a drop between two planes, in addition to the results obtained previously in [3] under 
conditions of zero gravity, an approximation of its surface by a spheroid is proposed. A certain analogy 
between the equations investigated and the equations of motion of a rigid body [4] is pointed out. 

1. A D R O P  H A N G I N G  F R O M  A H O R I Z O N T A L  P L A N E  

The form of equilibrium of a liquid drop, hanging from a horizontal plane (Fig. 1) is described by the 
following differential equation [1] 

a (1 /R  l + l/R2) = p g y - ~ K  

where ~ is the surface tension coefficient, p is the density of the liquid, g is the acceleration due to gravity, 
R1 and R e are the principal radii of curvature of the drop and K is twice the mean curvature of the drop 
at the base. 

Choosing the quantity @ as the unit of length, the equilibrium equation can be written in the 
following dimensionless form [1] 

y"/( 1,~-++ y'2) 3 + y ' / ( x J 1  + y,Z) = _ Y + K (1.1) 

(the prime denotes a derivative with respect to x). This equation has an irregular singular point x = 0, 
which, if the non-linearity is taken into account, does not enable us to use well-known methods of 
integration [5]. 

We will seek a solution for contact angles 0 > n/2. 
Introducing the new variable 

X = y' l~/1 + y,2 (1.2) 

tPrikl. Mat. Mekh. Vol. 69, No. 5, pp. 847-854, 2005. 
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of an ideal and viscous liquid. Doctorate dissertation, Kiev, 1991. 
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we obtain from Eq. (1.1) 

X' + X/x = - y  + K (1.3) 

or, after differentiation (taking into account the fact that the signs of X and y' are the same, 

X "  + X ' / x  - X / x  2 + X/~/1 - X 2 = 0 (1.4) 

By virtue of the symmetry of the problem about the y axis we will seek a solution of Eq. (1.4) for 
x _> 0 (x_< 0, x (0 )  = 0). 

In the above equation, as in (1.1), the irregularity is retained, but the non-linear part allows of 
an expansion in a converging power series for all values of the variable X having a physical meaning 
(IXl < 1; when IXl = 1 the drop breaks away from the support), which cannot be said of the quantity 
y' in Eq. (1.1). In addition, Eq. (1.4) enables us to draw certain qualitative conclusions. In fact, the 
quantities X' and X/x are the principal curvatures of the surface, which become equal to one another 
whenx = 0, and hence from Eq. (1.3) we obtain 

X'(O) = - I l R  o = ( K - h ) 1 2 ,  h = y(0) (1.5) 

where R0 is the radius of curvature of the meridian R = R(x) when x = 0. 
Suppose x,  andxc are the values ofx  for which X'(x,) = 0 andy(xc) = 0 respectively. We will show 

that the function R(x)  increases monotonically from the value R0 when x increases from 0 to x ,  (or Xc 
if there is no point of inflection x,).  

In the neighbourhood of the point x = 0, Eq. (1.4) can be approximated by Bessel's equation 

X"+X ' /x+(1  - 1/x 2) = 0 (1.6) 

Its solution, which satisfies the conditions X(0) = 0 and X'(0) = -l/R0, is a Bessel function of the first 
kind [6] 

1 ~ ,  (-1)*x 2. 

XB = -Rok~=o22kk!(k + 1)! 

It can be seen from this solution that X"(0) = 0, and in the right semi-neighbourhood of the point 
x = 0 we have X" > 0. If the point of the extremum of X' were to lie in the interval (0, x,) ,  there would 
be one more point of the extremum of X' in this interval, since X " ( x , )  > 0 (on passing through the 
value x = x,  the sign of X' changes from minus to plus). Eliminating the quantity X' from Eq. (1.4) by 
means of relation (1.3), we obtain 

X" = (2/x 2) + X/~/1 - 22 4" (y - -  g ) / x  (1.7) 

When x increases both terms on the right-hand side decrease monotonically, but the first one remains 
negative while the second one remains positive. Hence, the sum of these terms can only vanish at one 
point, and it is not possible for X' to vanish in the interval (0, x,) .  

The solution of Eq. (1.4) will be sought in the form of a power series 

X = a l x + a z x 2 + . . . ;  a I = - I l R  o (1.8) 
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Af te r  substituting this series and its derivatives into Eq. (1.4) ( taking into account  the expansion of  
the non- l inear  par t  o f  the la t ter  equa t ion  in powers  of  X),  we obtain  expressions for  the coefficients in 
t e rms  of  the coefficient a l  

a2n-  I + A 2 n -  I 
a2n = 0, a2n+l = ; n = 1,2 . . . .  (1.9) 

(2n + 1)2 _ 1 

= ( 2 n - 3 ) ! [  2 n - l +  (2n-5_)! .  I ~ t - , ( 2n -3 ) !  6 13 
A 2 n - I  2 , - l ( n _ l ) ! a l  2 " - 2 ( n _ 2 ) !  2"~ ~ff3 ~ "ala3 + . . .  

[2(n-m)-3]!! ~-,[2(n-m)-l]! l! 13 12m§ 
... ~ . . . . . . . . . .  . . . a2m+l  4- . . .  + 2  n In l ( n _ m  - 1)!2.~ l l [13! . . .12m+l  ! air /3 

(1.10) 

" " + ~ Z  3~ 6 t3 t2~_3 
l l ! !3! . . . '12n_3!a la3 . . .a2n_3,  n = 2 ,3  . . . .  

S u m m a t i o n  is carr ied out  over  all 11, 13 . . . .  12m + 1, which satisfy the condit ions 

l l + 3 1 3 + . . . + ( 2 m + l ) 1 2 m + l  = 2 n - l ,  l l + 1 3 + . . . + 1 2 m + l  = 2 ( n - m ) - I  (1.11) 

where  ll, 13 ... , l x  + 1 must  represen t  non-negat ive  integer  solutions of  the system of  Diophan t ine  
equat ions  (1.11). 

Since it is difficult to determine the radius of convergence of series (1.8) directly, we will consider some estimates 
of the solution of Eq. (1.4). 

In this equation we replace the expression 1/~/1-- X 2 by its first approximation 1 + X2/2 and, for the equation 
obtained 

,~' + ~ / x  + (1 - X / x 2 ) X  + X312 = 0 (1.12) 

we estimate the radius of convergence of the series of the form (1.8). Then the coefficientAen_l of powers o f X  2n- 1 
the expansion of X3/2 has the form 

1- -  3! kj k 3 k2,_ f 
A2n_ I = ~ Z k l [ k 3 [ . . . k 2 n  1 [al a3 . . .a2n_ 1 

where the summation is carried out over kl, k3, . . . ,  k2n-1 which satisfy the system of Diophantine equations 

k 1 + 3k 3 + ... + (2n - 1)k2n_ l = 2n - 1, kl + k3 + "" + k2n- 1 = 3 (1.13) 

We will later require an estimate of the number of non-negative integral solutions of this system. Corresponding 
estimates are only known for equations of the form 

l r Z  z + 12Z 2 + .. .  + lpZp = n (1.14) 

(ll, 12 . . . .  lp and n are non-negative integers). The number of solutions of Eq. (1.14) is equal to the coefficient En 
of the expansion [7] 

[ ( l - ~ / ' ) ( 1 - ~ / 2 ) . . . ( 1 - ~ / P ) ] - I  = Z Em~m (1.15) 
m=O 

Applying this formula to the second equation of (1.13), we obtain 

E 3 = n(n + l)(n + 2)/6 (1.16) 

while for the first equation of (1.13), formula (1.15) is practically useless due to the complexity of calculating the 
coefficient E2n-1. This calculation can be simplified somewhat, if we use the inequality 

[(1 - ~ ) ( l  - ~3)(1 - ~5)...(1 _ ~2n-1)]-1-< (1 + ~ ) ( l  + ~2)(1 +~3) . . . .  

= 1 + ~ + ~ 2 + 2 ~ 3 + 2 ~ 4 + 3 ~ 5 + 3 ~ 6 + 5 ~ 7 + . . .  
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whence 

E2n+I < n +  1 +En +En_ I + ... (1.17) 

Since the number of solutions of system (1.13) is much less than the number of solutions (1.16) or (1.17), for 
our further estimate we will change from system (1.13) to the equivalent system 

k I + k 3 + k s + . . . + k 2 n _  1=3 ,  k 3 + 2 k s + 3 k T + . . . + ( n - l ) k 2 n _  t = n - 2 ;  n > 2  (1.18) 

We will place the solutions of this system in the following order: 
k I = 3, ki = 0, i > 1 (there will only be a solution for n = 2) 
k 2 = 2, k2~-3 = 1, all the remaining ki = O. 
We will call the following series of solutions the first series 

kl=l, k3=l, k~_s=l 

kl=l , k3=O , ks=I, k~_7=l 

kt=l, k3=O, ks=O, kT=l, kzn_9=l 

The number of solutions of the first series is no greater than [n/2] - 2. 
We will consider the solutions of the second series 

k l = 0 ,  k 3 = l ,  k s = l ,  k2n_9=l 

k l = 0 ,  k 3 = l ,  ks=O, kT=l ,  k2n_ l l= l  

k l = 0 ,  k 3 = l .  ks=O, k-t=0, /%=1, k2n_13=l 

The number of solutions of this series is no greater than In/2] - 3. 
Since the number of these series is no greater than [n/2] - 2, the total number of solutions in them is no greater 

than ([n/2] - 1) ([n/2] - 2)/2. 
We must supplement these solutions with the following: 

kt=O, k3=2, k2~_7=1 

k t = 0 ,  ks=0 ,  ks=2 ,  kz, ,_H=l 

The number of such solutions is no greater than [(n - 1)]/4]. 
The number of all solutions of system (1.18) is no greater than N = 3 + [n2/8] - [n/2]. 
To estimate the radius of convergence of the series, representing the solution of Eq. (1.12), we will assume that 

lal I < 1/2. Then the following inequalities are satisfied for the first numbers n = 1, 2, 3, 4, 5, 6 

[a2n- t[ < (1/2) 2n- I (1.19) 

Using this property as a basis for induction, it can be proved, using the first equality of (1.13), that it is also 
satisfied for la~+ll. As a result we conclude that the radius of convergence of the power series considered is no 
less than two. 

We will prove that the solution of Eq. (1.12) ~(x) is the minorant of the exact solution cp(x) of Eq. (1.4) (when 
v ( 0 )  = ~ ( 0 )  = o,  ~ , ' (0)  = ~p'(0) = a l ) .  

A comparison of the solutions tp(x) = arx + a3 x~ + asr 5 + ... and W(x) = art + 53 x3 + tisx 5 + ... in a small 
neighbourhood ofx  = 0 shows that tp(x) _> W(x) (and tp'(x) > ~(x)),  since ti3 = a 3, a5 = as, a7 < a7. 

We will now prove that the inequality tp(x) _> ~/(x) remains valid in the interval of convergence of the series 
representing y(x). 

We will write Eqs (1.4) and (1.12) respectively in the form 

(xX')' = ( l l x - x ) X - x ( X 3 / 2  + 3X5/8+ . . .), (x)C)' = ( l / x - x ) X - x X 3 1 2  

We substitute the corresponding solutions into these equations and, subtracting one from the other, we obtain 

[x(tp' - u = (I/x - x)OP - u - x/2(q~ 3 - u _ x(3q~5/8 +...) 

We will assume that we have obtained the point Xl ~ (0; 1), at which the curve q0(x) and ~(x) intersect, i.e. 
q0(Xl) = ~(xl) and cp'(Xl) < V'(xl) and forx e (xl; xl + e), e > 0 we have q0(x) < u and q~'(x) < V'(x). Then, after 
integrating the last equation over a fairly small section Ix1, xl + e] from the left and from the right we obtain a 
number of different signs. This is absurd. Hence, intersection of the curves is impossible. 
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Together with the minorant ~(x) for the solution 9(x) we can indicate its majorant W(x) if we replace 1/~/1 - X  2 
in Eq. (1.4) by a portion of a parabola 1 + LX 2, by choosing the quantity ~. such that for 0 _< X 2 _< X~ < 1 the inequality 

1/~-1 - X 2 < 1 + ~.X 2 is satisfied. For example, ~ = 0.62 when X. = -1/2. With this replacement, the majorant 
W(x) is defined in the form of a series, similar to the definition of u 

Hence, although the radius of convergence of series (1.8) has not been established, this series can be used, at 
least, for values ofx for which the numerical values of the series remain between the values ~(x) and V(x), and 
we thereby have an estimate of the error. 

Using formulae (1.9) and (1.10) we can write the first coefficients of the expansion (1.8) in the explicit 
form 

a 3 = - ~ a  1, a5 = - . ~ 2 a l + a  3 , a7 = - - ~ , ~ a  l + ~ 2 a l a 3 + a  5 

1 ( 5  7 1 5 4  3 2  3 2 "~ 
~ a l a  5 + + a 7 a 9 = _ ~ ] ~ a l  + - ~ a l a  3 + ~ a l a  3 ) 

From relation (1.3) we have the solution 

y = K -  )C - XIx  = K -  2a I - 4 a 3  x2  - 6 a 5 x  4 - . . .  (1.20) 

which contains two parameters: K and R0. In order to determine these parameters, we will use expression 
(1.2) and the boundary condition y'(Xc) = tg0; from expression (1.2) we then obtain X(xc, R0) = -sin0. 
From Eq. (1.3) we express K = )Y(Xc, Ro) - (sinO)/xc and, substituting into relation (1.20) (for x = Xc 
and y = 0), we express xc = xc(Ro) and K = K(Ro) and y = y(x, Ro). 

Xc 
The volume of the drop V = 2re Iyxdx (assumed given) determines the values of R0. 

0 
Below, for values of R0 = 1 and h = 1, we present the results of a calculation ofy  from formula (1.2) 

and the quantity A, equal to the difference in the values o fy  obtained and the results of a numerical 
solution of Eq. (1.1) 

x 0 0.2 0.4 0.6 0.8 1 
y 1 0.9978 0.9433 0.8495 0.6988 0.4690 
A.  10 4 0 0 0 0 1 15 

2. A D R O P  ON A P L A N E  

We will consider the shape of a drop lying on a plane (Fig. 2) and having a contact angle 0 > n/2. The 
equation of the meridian in this case will differ from (1.1) solely in the sign of the right-hand side (the 
direction of the y axis is now opposite to the direction of the force of gravity) and instead of Eq. (1.4) 
we obtain an equation in which the sign of the last term is changed from plus to minus. In the 
neighbourhood of the point x = 0 in the linear approximation it has the form of an equation related 
to Bessel's equation [6]. 

We will again seek a solution of the problem in the form of series (1.8). We now obtain 

a2n - 1 + A 2 n -  1 
a2n = O, a2n+ l - 

(2n + 1)1 _ 1 

: : x  - - ' h i ' ' : : :  

Fig. 2 Fig. 3 
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(the quantitiesA2~+ as before, are defined by formulae (1.10)). Further, instead of expression (1.20) 
we have 

y = K + X I x + X '  = K+2a l+4a3x2+. . .  

3. A D R O P  B E T W E E N  P A R A L L E L  P L A N E S  U N D E R  
Z E R O  G R A V I T Y  C O N D I T I O N S  

We will consider the shape of a drop, confined between parallel walls (Fig. 3) in zero gravity conditions 
with contact angles 0 < n/2 (unwetted). Suppose the y axis coincides with the axis of symmetry of the 
drop, while thex  axis lies in the plane of its equator at a distance h from the wall. The equation for the 
variable X takes the form 

X ' + X / x = - K  ( K > 0 )  (3.1) 

and its general solution is 

X = - K x / 2  + c~/x (3.2) 

Although the solution for y is expressed in quadratures, the exact solution of the boundary-value 
problem is quite complex to obtain even for small deformations of the drop [3]. 

We will consider an approximation of the meridian of the drop by an arc of an ellipse, using the 
monitoring of a change in the curvature of the meridian. Suppose a and b are the values ofx  for which 
the meridian comes in contact with the wall and intersects the equator of the drop, respectively. Using 
the boundary condition 

we obtain 

X(b) = - 1  = - K b l 2 + c l l b  

c I = ( K a / 2 -  sin0)a (3.3) 

It can be seen that 

c 1>0  and c = -2 (b+as inO) / (b2-a  2) (3.4) 

It follows from relations (3.1) and (3.2) that the curvature of the meridian decreases monotonically 
in modulus as x increases. 

Whenx  = a andy = h the radius of  the principal curvature along a parallel is equal to a/sin0. Hence, 
the radius of curvature of the meridian at the point of contact is 

R a = l/[X'(a)[ = a l ( a K - s i n 0 )  

At the point of intersection with the equator, the radius of curvature of the meridian R 0 = --b(1 - K b )  
(since the equator is a line of  curvature). 

We will approximate the meridian by the arc of an ellipse so that the latter will have the specified 
contact angle 0 and a curvature which decreases in modulus as x increases, where its radius of curvature 
p at the point x = a, y = h is identical with Ra, while the radius of curvature P0 at the point (b, 0) is 
identical with Rn. 

Suppose ~2/A2 + y2/B2 = 1 is the required equation of the ellipse, where ~ = x - a - 1, where I is the 
distance from the centre of the ellipse to the point x = a and p(y, ~) is the radius of curvature of the 
ellipse. Here 

P(Y, ~) = AS~aEy2 + B2~ 2) 

Choosing the parameters,4,  B and l so that the above requirements are satisfied, we obtain 

1 = A2tg0 B 2 -b  _ a 
JA2tgE0+B ~' -A- = 1 - K b '  o(h , l )  aK-s inO 
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The  b o u n d a r y  condi t ions  

b = a - A - l ,  h = B  l~-12/A 2 

and  the  condi t ion  for  the  vo lume  of  the  d rop  to be  cons tan t  

b 

V = 2ga2h + 2~Syxdx = 2ga2h + 
a 

+ T t ( a - l ) A B ( 2 - "  l I l l - 1 2  ) I 1 ~ - ~ )  3 a r c s l n ~ -  a -~ + ~IcA2B 

are  connec t ed  with  these  re la t ions .  
In  par t icu lar ,  for  c o m p l e t e  wet t ing  (0 = 0) we ob ta in  

1 = 0, B = h, V = 2/r.a2h + (lt2/2)Aha + 2gA2h/3 

Hence~ de t e rmin ing  the quant i ty  a as the  posi t ive  roo t  a = a (A) ,  f rom the  previous  fo rmu lae  we find 
K = h/A a n d A  = A(h). 

W h e n  0 > 0 the  values  of  the  p a r a m e t e r s  o b t a i n e d  can  be  used  as the  first app rox ima t ions  for  
calculat ing the  correc t ions .  

Remark. In the problem of reducing the order of the differential equations of motion of a rigid body ([4] etc.) 
the following equation is obtained 

y" _ (Vy- VxY')Z+ 

( 2 v  - 

where Vand f~ are certain specified functions of the variablesx andy; V~ = OV/Ox, Vy = 3V/by. 
This equation bears some similarity to the equation considered above. By replacing the variable X = l/x/-]- + y2 

it can be reduced to the system 

Jl  +x 1 +_./ l  
Y' = X , X' = ~ Vy X~/ 2V 

the right-hand sides of which can be represented in the form of the products of series in powers of X 2 in X -1 or 
X -2 over the whole range of values o f X  ~ [0, 1). 
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